什么纸| 木耳不能和什么一起吃| 丝袜是什么材质| 2022年是什么生肖年| 辩证思维是什么意思| 单侧流鼻血是什么原因| 节瓜煲汤放什么材料| 酱油是什么做的| 胎儿头偏小是什么原因引起的| 4月2号是什么星座| 刀子是什么意思| 半胱氨酸是什么| 腊猪脚炖什么好吃| 卖淫什么意思| 预科班什么意思| 跟风是什么意思| 珠是什么生肖| 痔疮不能吃什么| 始祖鸟什么档次| 什么时候吃榴莲最好| 得艾滋病的人有什么症状| 巨蟹什么象星座| 什么叫认知能力| 朱雀玄武是什么意思| 玉米须加什么治痛风| 孙耀威为什么被封杀| 前白蛋白低是什么意思| aba是什么意思| 胆管炎是什么原因引起的| 空腹血糖受损是什么意思| 孕妇梦见蛇代表什么| 总流口水是什么原因| 通草长什么样图片| 眼睛黑色部分叫什么| 血液粘稠是什么原因| 胃幽门螺旋杆菌吃什么药| 生化是什么原因引起的| 奕字属于五行属什么| 氩弧焊对身体有什么危害| 降钙素原是什么意思| 右边小腹疼是什么原因| 带状疱疹挂什么科| 肠胃消化不好吃什么药| 肚子疼应该吃什么药| 六月十八是什么星座| 胃疼适合吃什么食物| 乙肝两对半45阳性是什么意思| 生长激素分泌的高峰期是什么时候| 罗可以组什么词| 右眼皮跳是什么预兆| 3个土念什么| 乳头内陷是什么原因| hisense是什么牌子| 什么是重心| 银装素裹什么意思| 什么路不能走| 1119是什么星座| 京五行属什么| 什么动物跑得快| chemical是什么意思| 骨刺挂什么科| 熊是什么生肖| 人为什么会出汗| 墨镜偏光是什么意思| 梦见大领导有什么预兆| 二道贩子是什么意思| 下面有味道用什么药| 左手麻木是什么原因引起的| 7月9日什么星座| 4月3号什么星座| 药占比什么意思| 失眠用什么药好| 爻辞是什么意思| 金晨什么星座| 铅是什么东西| 左后背发麻是什么原因| 土字五行属什么| 螃蟹和什么不能一起吃| 建兰什么时候开花| 怎么判断自己什么脸型| 抑制是什么意思| 男生第一次什么感觉| 无水乙醇是什么| 膝盖疼看什么科| 股票填权是什么意思| 梦见着火是什么预兆| 胃胀消化不好吃什么药| 鼻子出汗多是什么原因| 过火是什么意思| 60岁男人喜欢什么样的女人| 为什么水能灭火| 西安和咸阳什么关系| 12点半是什么时辰| 伤口溃烂不愈合用什么药| 猪横利是什么| 什么药能治痛风| 考军校要什么条件| 正常高压是什么意思| 女人体检都查什么项目| 本命年为什么要穿红色| 盆腔炎吃什么药最好| 碳足迹是什么| 露营什么意思| 夏至要吃什么| 女性血常规都检查什么| 五月二十四是什么星座| 寿终正寝是什么意思| 榻榻米床垫什么材质的好| 活泼开朗是什么意思| imei是什么意思| 什么血压计最准确| 吃饭的时候恶心想吐是什么原因| notebook是什么意思| 崖柏是什么| 白开水是什么意思| 三点水弘读什么| 派对是什么意思| 胃不好适合吃什么水果| 澳大利亚有什么特产| 男性阴囊潮湿是什么病| 数字7五行属什么| 梦见好多动物是什么意思| 花胶是什么| 女人气虚吃什么补最快| 小腿前面的骨头叫什么| 云南小黄姜和普通姜有什么区别| 军字五行属什么| 眼睛模糊用什么药好| 为什么左手会发麻| 小受是什么意思| 二刷是什么意思| 石榴代表什么生肖| 卖是什么意思| 李世民字什么| 2100年是什么年| 肺大泡有什么症状| 屈原属什么生肖| 低钠有什么症状和危害| 郑和是什么族| 瑜伽是什么运动| 昝是什么意思| 莲雾什么味道| 儿童口腔疱疹吃什么药| 孕妇感冒可以吃什么感冒药| 三伏天是什么| 子宫发炎是什么原因引起的| 伏羲和女娲是什么关系| 蚂蚁为什么要搬家| 张国荣为什么喜欢男的| 丹参有什么作用和功效| 胰岛素高有什么危害| 别出心裁什么意思| 医院打耳洞挂什么科| 什么而不什么| 虫草适合什么人吃| 腺样体肥大吃什么药| 早上吃什么减肥| 皮肤黑适合什么颜色的衣服| 有加有减先算什么| 梦见小黑蛇是什么预兆| 背疼是什么原因引起的女人| 喝酒手掌发红是什么原因| 割包皮应该挂什么科| 喝什么补羊水| 维生素b吃多了有什么副作用| 4月29号是什么星座| 甲亢属于什么科室| 执业药师是干什么的| 为什么有些人特别招蚊子| 胳膊肘往外拐是什么意思| 沉沦是什么意思| 临床路径是什么意思| 正常的白带是什么样的| 漪字五行属什么| 痤疮用什么药膏最好| 生化妊娠后需要注意什么| 哆啦a梦为什么没有耳朵| 1980年属什么生肖| 喜用神是什么意思| hcg低有什么补救的办法| igc是什么意思| 撸管什么意思| 鼻烟为什么没人吸了| ad是什么缩写| 生姜和红糖熬水有什么作用| 宫颈炎吃什么药效果最好| 眼睛发粘是什么原因| 酒店五行属什么| 惟妙惟肖是什么意思| 舌头疼痛吃什么药| 什么叫腰肌劳损| 羊肚是羊的什么部位| psd是什么意思| 利玛窦什么时候来中国| 区人大代表是什么级别| 专升本有什么专业| 皲裂是什么意思| 排卵是什么意思啊| 吸气是什么意思| 肚子胀气是什么原因| 下面瘙痒是什么原因| ptsd是什么病| 什么原因引起血糖高| 泡打粉是什么| 小孩说话不清楚挂什么科| canon什么牌子| 氟骨症是什么病| 出车前检查的目的是什么| 蛋白尿吃什么药| 伤到骨头吃什么好得快| 梦见牙齿掉了是什么征兆| 加拿大用什么货币| 吃什么水果可以变白| 吊人什么意思| 脚抽筋是什么原因| 女人喝黄连有什么好处| l1椎体在什么位置| 子宫内膜厚是什么意思| iu是什么单位| 皮肚是什么| 做梦梦见剪头发是什么意思| 活菩萨是什么意思| 蛤蚧是什么| 手脚发热吃什么药| edf是什么意思| 法盲是什么意思| 糖类抗原是什么意思| 四维什么时候做最佳| 手麻木是什么引起的| 寿司用什么米做好吃| 木乃伊是什么| 水是什么生肖| 什么叫转基因| 什么的蹲着| 什么木头做菜板好| 印鉴是什么意思| 野生铁皮石斛什么价| 烤油边是什么| 古稀是什么意思| 绿豆与什么食物相克| 早上屁多是什么原因造成的| 面藕是什么做的| vol是什么意思| 麦芒是什么意思| 五三年属什么生肖| 38节送什么礼物| 帕金森病是什么原因引起的| 6月1号什么星座| 蛇是什么类动物| 乳清是什么| 生理期可以吃什么| 雪花粉是什么面粉| 为什么男人喜欢女人| 胆囊炎要注意些什么| 无私是什么意思| 疳积是什么病| 脑袋疼挂什么科| 孕妇吃海带有什么好处| 三叉神经痛吃什么药| 经期适合喝什么茶| 菜板什么木材最好| 做梦数钱是什么意思啊| 透析什么意思| 强劲的动物是什么生肖| 百度

深交所绘制A股个人投资者群像:过半新股民不满30岁

百度 近日,事件终于告一段落,北京市高级人民法院作出终审判决,认为第13039178号“双沟珍宝坊君坊及图”商标(下称争议商标)与第519224号“君及图”商标(下称引证商标)不构成使用在同一种或类似商品上的近似商标。

The second annual Breakthrough Prize in Mathematics goes to topologist Ian Agol of the University of California, Berkeley

Tonight the Breakthrough Prize Foundation awarded the second annual Breakthrough Prize in Mathematics to Ian Agol of the University of California, Berkeley, for his work in geometric topology, which completed a revolution in the field that began more than 30 years ago. With an award of $3 million apiece in the categories of life sciences, physics and mathematics, the Breakthrough Prizes are the world’s richest science prizes.

Agol’s field, topology, is the branch of mathematics that pretends all shapes are made of putty or stretchy rubber. It studies those properties that remain the same when the space is squished or stretched, as long as there is no tearing or gluing. You can think of topological properties as the large-scale properties of a space. Geometry, on the other hand, looks at finer properties, those that depend on exactly how the space is put together. Topologists have long had a fairly complete understanding of how topology and geometry interact for two-dimensional surfaces, or 2-manifolds. Three-dimensional manifolds are a different story.

An appetizing way to understand 2-manifolds and 3-manifolds is to think of a doughnut. The glaze—the two-dimensional donut-shaped surface—is the 2-manifold. The 3-manifold is the whole doughnut, filling and all. We interact with 3-manifolds all the time in our everyday life, but mathematicians also study 3-manifolds that are more abstract and cannot be represented visually in the real world.


On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.


Kieff/Wikimedia Commons

Agol’s work is the culmination of a research program begun by mathematician William Thurston. In 1982 Thurston published a landmark paper laying out all the key questions and some possible answers for how to build and work with 3-manifolds. The paper served as a road map for research in the subject until 2012, when Agol provided answers to the last of Thurston’s major lingering questions about 3-manifolds.

The marquee conjecture from Thurston’s work is called the geometrization conjecture. (It is now the geometrization theorem because Russian mathematician Grigori Perelman proved it in the early 2000s. He famously refused the prestigious Fields Medal and the million-dollar Millennium Prize for his work. The theorem states that all 3-manifolds, no matter how complicated they are topologically, have only a few different geometric descriptions. Most of these descriptions allow mathematicians to understand three-dimensional geometry by understanding two-dimensional geometry, which is fundamentally simpler. But one type of geometry, called hyperbolic, resisted this simplification. Agol’s work gives researchers a way to study these hyperbolic 3-manifolds using surfaces as well.

Specifically, Agol proved the virtual Haken and virtual fibering conjectures. Topologists say a space has a property “virtually” if it can be “covered” by a space that does have the property. “Covered,” in this case, is a technical term closely related to but not exactly like the everyday act of wrapping a present.One way to understand this idea is to think about coiling up a garden hose on a circular reel. In that picture we could say the hose is a cover of the circle or the circle is a virtual hose. The power of “virtual” is that it allows you to understand the object that is covered by understanding the better-behaved cover. Returning to the garden hose, the circle and the hose are not exactly the same, but they share some similarities, and a deep, Zen-like understanding of the hose will help one understand the circle.

Haken manifolds, named after German mathematician Wolfgang Haken, can be cut into smaller pieces in an iterative process. If a manifold yields to this type of decomposition, it becomes easy to understand it by understanding the pieces left at the end. The virtual Haken conjecture states that many manifolds that are not Haken are virtually Haken?in other words, studying the Haken cover can help researchers understand the manifold that lurks beneath.

The virtual fibering conjecture ties geometry to dynamics, the study of how spaces change over time. If you drag a circle along a line segment, you get a cylinder. Then you can glue the top circle to the bottom to get a torus—the mathematical term for shape that looks like an inner tube. You could see the torus as a diagram tracing out the circle’s movement through space over time. Jumping up a dimension, you can do something similar by dragging a surface along a line segment and gluing the top surface to the bottom to get a 3-manifold called a surface bundle. The virtual fibering conjecture states that a large set of manifolds are not quite surface bundles, but up to the wiggle room of the word “virtually,” they might as well be. “A 3-manifold has lots of different lives,” University of Chicago mathematician Danny Calegari says. It can be described geometrically, dynamically, combinatorially, and so on. “You want to reconcile the different points of view.” Agol’s work reconciling several different viewpoints is the basis for his award.

Although the Breakthrough Prize is an individual award, Agol’s success illustrates the importance of collaboration in mathematics. “I feel like I only deserve a small part of it because I’ve made so much use of other people’s work and relied a lot on collaborators and people who did work before me,” Agol says. His theorem builds most immediately on work of McGill University mathematician Daniel Wise, who shared the 2013 Oswald Veblen Prize in geometry with Agol. Agol also relied on work of Jeremy Kahn and Vlad Markovic, and part of the proof of the virtual Haken conjecture was written jointly with Daniel Groves and Jason Manning; many other people made important contributions along the way. “I find that when you’re talking to people, it puts your mind in a different reference frame where you make intuitive leaps,” Agol says. “You’re in verbal mode, not contemplative mode.”

Richard Taylor of the Institute for Advanced Study was one of the recipients of last year’s Breakthrough Prize in mathematics, and he chaired the Selection Committee this year. “Agol’s work embodied these two things we were looking for,” Taylor says. “He’s clearly at the top of his game, and it’s also more than one result. This isn’t a prize for one theorem. It’s a prize for people who have made a series of contributions.”

Agol’s proof of the virtual Haken conjecture in some ways marks the end of an era, but as Taylor says, “It’s probably not the case that 3-manifold topology has come to an end.” Agol says there are still plenty of interesting questions to ask about 3-manifolds. “For me, one of the main programs is to try to connect up what has been done in hyperbolic geometry—the geometrization conjecture and the picture we have there—with other areas of 3-manifold topology.” There is also the question of computational complexity: If someone hands you a 3-manifold, how long will it take to find the Haken manifold that covers it and then to decompose it into smaller pieces? In addition, the relatively complete picture of 3-manifolds could help researchers understand the heady world of four-dimensional spaces in much the same way surfaces helped them understand 3-manifolds.

Agol says he hopes to use his $3-million prize to give back to the mathematics community, perhaps by supporting mathematicians in developing countries as past recipients have done. He says winning the award is an honor but he did not enter math expecting to win prizes. “Finding out about the prize was never as exciting as the actual moment of thinking I had figured out the virtual Haken question.”

膝盖后面叫什么部位 什么的杏花 痰中带血吃什么药 血沉50说明什么原因 吃什么降尿酸
下眼睑跳动是什么原因 分泌物过氧化氢阳性是什么意思 植株是什么意思 电轴右偏是什么意思 间接胆红素是什么
靓仔是什么意思 辐射是什么意思 脑供血不足用什么药好 什么时候洗头是最佳时间 淋巴细胞降低说明什么
饭后呕吐是什么原因引起的 自主神经功能紊乱吃什么药 跳爵士舞穿什么衣服 怀孕后的分泌物是什么样的 支原体和衣原体有什么区别
螃蟹是什么季节吃的1949doufunao.com 抬头头晕是什么原因hcv8jop1ns0r.cn pca是什么意思hcv9jop6ns0r.cn 杏花什么季节开hcv8jop9ns0r.cn 本番是什么意思hcv8jop2ns0r.cn
花椒和麻椒有什么区别hcv8jop1ns5r.cn hpv感染是什么hcv8jop8ns1r.cn 属狗是什么星座hcv7jop5ns1r.cn 痔疮吃什么wzqsfys.com 马克华菲是什么档次hcv8jop0ns6r.cn
河图洛书是什么意思sanhestory.com 早上起来后背疼是什么原因hcv8jop5ns1r.cn 为什么总是做噩梦hcv8jop6ns6r.cn 喝什么解辣hcv8jop2ns2r.cn 腺病毒吃什么药hcv9jop2ns1r.cn
肌醇是什么东西adwl56.com 阴茎长水泡是什么原因hcv9jop7ns1r.cn bdp是什么意思hcv7jop4ns7r.cn 做梦死人了是什么征兆hcv9jop7ns2r.cn 后背疼是什么病hcv9jop6ns4r.cn
百度